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Abstract
The tomographic approach to quantum mechanics is revisited as a direct
tool to investigate the violation of Bell-like inequalities. Since quantum
tomograms are well defined probability distributions, the tomographic approach
is emphasized to be the most natural one to compare the predictions of classical
and quantum theory. Examples of inequalities for two qubits and two qutrits
are considered in the tomographic probability representation of spin states.

PACS numbers: 03.65.Ud, 03.67.−a

1. Introduction

Bell’s inequalities were originally formulated [1] in order to provide a mathematical
characterization of classical local hidden variables theories. In their original formulation,
Bell’s inequalities are propositions concerning expectation values of dichotomic observables
(such as spin−1/2 polarization), when two spatially separated systems and local measurements
are considered in the presence of perfect (anti-) correlations between the two systems relevant
observables (such as two spin−1/2 in a singlet state). The experimental violation of these
inequalities is evidence against local classical variables models. Later on, other inequalities
were proposed that generalize Bell’s idea to the case of non-perfectly (anti-) correlated
spin−1/2 systems [2, 3], to the case of spin of higher value [4] and concerning the probability
of measurement output instead of measurement expectation value [5].

It is a remarkable fact that not all the states of a (say) bipartite quantum system do violate
some Bell-like inequalities: only states that are entangled are truly non-local and not allowed
to be described by means of a classical local variables model. With the development of the
theory of quantum information and in view of the special role played by entangled states in
quantum information protocols, a violation of some Bell-like inequalities has assumed also
an operational role as a witness of entanglement. The power of Bell-like inequalities is that
they refer only to observables quantities as expectation values, correlations and probabilities
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without an explicit link to the underlying theory. If a Bell-like inequality is a proposition
that is true for a classical theory, it is nevertheless a well-defined proposition (not necessary
true) in the framework of quantum theory. Hence the very idea of Bell’s inequalities leads to
consider a unified description of both classical and quantum mechanics based on fundamental
quantities as probability distributions.

The conventional description of pure quantum states is by means of wavefunctions [6] or
state vectors in Hilbert space [7]. For mixed states, the density matrix [8, 9] is used to describe
quantum states. The problem of measuring the quantum states was considered as the problem
of finding the Wigner function [10], by means of which the optical tomograms of the states
[11, 12], which are the probability distribution densities of the homodyne photon quadratures,
can be determined. In [13] the use of symplectic tomogram as a tool for state reconstruction
was extended in order to describe the quantum state by the probability distribution from the
very beginning. This approach is called ‘tomographic probability representation of quantum
states’. For spin degrees of freedom the probability representation was found in [14, 15] for
one qudit and in [16] for two qudits. In the framework of the tomographic representation, the
spin state is identified with the probability distribution of spin projection on direction labelled
by angular coordinates on the Bloch spheres for an arbitrary number of qudits.

The tomographic map from state vectors or density matrices onto fair probability
distributions contains complete information on the quantum states. Its mathematical structure
was recently found in [17]. The relation of tomographic probability representation with the
star-product quantization procedure was established in [18].

The aim of this work is to find new explicit formulae for spin tomograms of two qubits
and two qutrits, and to analyse, by means of these formulae, some Bell-like inequalities. The
paper is organized as follows. In section 2 we review the separability problem using the
tomographic probability description of spin states. In section 3 we derive the formulae for
spin tomograms of two qubits and study the CHSH inequalities [2]. In section 4 we obtain the
probability representation for a multiqutrit state. In section 5 we present the conclusions.

2. Tomograms and separability

A tomographic description of a quantum system can be formulated for systems with both
discrete and continuous variables [17]. Here we are interested in the case of discrete variable
systems that we are going to describe in the framework of spin tomography.

For qudit states with spin j , the tomographic probability distribution is defined as the
diagonal elements of the density operator

ρU = U †ρU (1)

in a standard basis {|m〉}m=−j,...,j , where U is an operator of the unitary irreducible
representation of the SU(2) group. The tomogram of the qudit state reads

ω(m,
→
n) = 〈m|ρU |m〉 = 〈m|U †ρU |m〉. (2)

Here
→
n = (sin θ cos φ, sin θ sin φ, cos θ) is a unit vector determining a point on the Bloch

sphere. The tomogram is, by construction, the probability distribution of the spin projection

m onto the direction
→
n . The probability distribution determines the density matrix ρ. The

formula connecting the tomogram ω(m,
→
n) with the density matrix ρ was obtained in [15].

For example, the tomographic probability of the qubit state

ρ =
[

1 0
0 0

]
(3)
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reads as follows:

ω(1/2,
→
n) = cos2 θ/2, (4)

ω(−1/2,
→
n) = sin2 θ/2. (5)

We used the matrix U rotating the spinor in the form

U =
[

cos θ/2 ei φ+ψ

2 sin θ/2 ei φ−ψ

2

−sin θ/2 e−i φ−ψ

2 cos θ/2 e−i φ+ψ

2

]
. (6)

Here φ, θ, ψ are the Euler angles. For two qudits, the tomogram is defined as follows:

ω(m1,m2; →
n1,

→
n2) = 〈m1m2|U†ρU |m1m2〉, (7)

where ρ is a density matrix of two qudits, U = U1 ⊗ U2, and the matrices U1 and U2 are
matrices of irreducible representation of the group SU(2) corresponding to the first and the
second qudit, respectively. The spin projections m1 and m2 onto the directions

→
n1 and

→
n2 are

random variables of the tomogram which is a joint probability distribution function for the two
spin projections. Below we discuss in more detail the generic qudits tomograms.

Let us consider an operator A(j) acting on a space of a spin−j irreducible representation
of SU(2). Given a standard basis {|jm〉} with m = −j,−j + 1, . . . , j − 1, j the matrix
elements of the operator

A
(j)

m,m′ = 〈m|A(j)|m′〉 (8)

of course completely determine the operator

A(j) =
∑

A
(j)

m,m′ |m〉〈m′|. (9)

We consider the diagonal elements in a rotated frame

ωA(m,�) = 〈m|R†(�)A(j)R(�)|m〉 = tr[A(j)R(�)|m〉〈m|R†(�)], (10)

where R(�) is a unitary spin−j representation of SU(2) and � is a short-hand notation for
the three Euler angles α, β and γ . The diagonal elements, as functions of the variable m and
of the parameters �, define the spin tomogram of the operator A(j). In the case where A(j)

represents a density operator describing the state of a spin−j system, the tomogram ωA(m,�)

is interpreted as the probability of finding the system with polarization m along the z axis in a
system rotated with Euler angles �. The tomogram (10) is a family of well-defined probability

distribution on the variable m with the parameter
→
n :

ωA(m,
→
n) � 0, (11)∑

m

ωA(m,
→
n) = 1. (12)

It is a remarkable result that knowledge of only diagonal matrix elements in a generic
rotated frame is sufficient to reconstruct the operator:

A(j) =
j∑

m=−j

∫
d�K(m,�)ωA(m,�), (13)

where ∫
d� =

∫ 2π

0
dα

∫ π

0
sin β dβ

∫ 2π

0
dγ. (14)

The explicit expression for the quantizer operator K(m,�) was found in [18].
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Note that as long as the polarization along the z axis is considered, the spin tomogram
(10) depends only on two Euler angles: in the following we write

�(j)(m,
→
n) = R(�)|m〉〈m|R†(�), (15)

where
→
n = (cos α sin β, sin α sin β, cos β) is the rotated axis of polarization. Hence, in the

tomographic approach, the state of a quantum system is described by means of a well-

defined probability distribution ω(m,
→
n) related to a Stern–Gerlach-like measurement along

the direction
→
n . Note that a Bloch sphere description is obtained for the quantum state even

for j > 1/2.
One of the open problems in quantum mechanics and quantum information theory is to

give a complete characterization of entangled states. Given a bipartite system, a quantum state
of the system is said to be separable if it can be written as a convex sum of factorized states:

ρ =
∑

k

pkρ
(A)
k ⊗ ρ

(B)
k ,

∑
k

pk = 1. (16)

Otherwise the state is said to be entangled. Let us also recall that a factorized state ρ =
ρ(A) ⊗ρ(B) is called a simply separable state. These definitions can be generalized, with some
care, to the case of multi-partite systems [19, 20].

The relation between local realism and separability of quantum states was widely studied.
It is clear from the definition (16) that every separable states can be described by means of
a local hidden variables model (where the hidden variable can be identified with the index
k). In [21] it was first shown with an example that the converse is not true, i.e., there exist
quantum states that can be described by a hidden local variables model but are nevertheless
entangled. This means that the violation of Bell’s inequalities by a given quantum state
is a sufficient (though not necessary) condition for the state to be entangled. Although a
systematic approach to generating all Bell’s inequalities exists [22], how to find the inequality
that presents a maximal violation for a given entangled state is still an open problem.

From the point of view of entanglement detection and characterization, it is interesting
to consider the tomographic description of a state of multipartite quantum systems. To fix the
ideas, let us consider a bipartite system composed of one spin−j1 and one spin−j2: in this
case the spin tomogram of a state of the compound system described by the density matrix ρ

is written as follows:

ωρ(m1,m2; →
n1,

→
n2) = tr(ρ�(j1)(m1,

→
n1) ⊗ �(j2)(m2,

→
n2)). (17)

This definition is simply generalized to the case of multipartite spin systems and refers to local
Stern–Gerlach-like measurement.

For example, the tomographic probability distribution function for the two qubit state

ρ =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 (18)

reads

ω(1/2, 1/2; →
n1,

→
n2) = cos2 θ1/2 cos2 θ2/2, (19)

ω(1/2,−1/2; →
n1,

→
n2) = cos2 θ1/2 sin2 θ2/2, (20)

ω(−1/2, 1/2; →
n1,

→
n2) = sin2 θ1/2 cos2 θ2/2, (21)

ω(−1/2,−1/2; →
n1,

→
n2) = sin2 θ1/2 sin2 θ2/2. (22)
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The state is simply separable and the tomographic probability has the form of factorized joint
probability distribution

ω(m1,m2; →
n1,

→
n2) = ω1(m1,

→
n1)ω2(m2,

→
n2), (23)

where the probability distributions ω1 and ω2 describe the states of the first and second spins,
respectively. The joint tomographic probability determines the density matrix by means of
the inversion formula obtained in [16]. Due to the linearity of the tomographic map of density
matrices onto joint probability distributions of spin projections, the tomogram of a separable
state is the convex sum of factorized joint probability distributions of the simply separable
states:

ω(m1,m2; →
n1,

→
n2) =

∑
k

pkω
(k)
1 (m1,

→
n1)ω

(k)
2 (m2,

→
n2). (24)

3. Qubits tomograms

In this section we discuss the tomographic representation for spin−1/2 (qubit) systems in its
link with standard density matrix description. Let us first consider a one-qubit system. It is
well known that a qubit density state can be written in terms of Pauli matrices:

ρ1 = 1
2 (σ0 + xiσi), (25)

where (the sum over repeated indices is intended)

xi = δij tr(ρσj ) = δij xj (26)

since

tr(σiσj ) = 2δij . (27)

In the following we take m = −1, 1. With this convention, from the definition (10) it
follows that in the tomographic representation

ω(m,
→
n) = tr(ρ1�(m,

→
n)), (28)

where

�(m,
→
n) = 1

2 (σ0 + mniσi) (29)

is the projector on the eigenstate with polarization m along the direction
→
n = (n1, n2, n3),

where for convenience we have chosen m = ±1. The operator �(m,
→
n) plays the role of the

de-quantizer operator used in a star-product quantization scheme [23].
From (28) and (26), it follows that the explicit expression for a generic qubit tomogram is

ω1(m,
→
n) = 1

2 (1 + m
→
n · →

x ), (30)

where
→
x = (x1, x2, x3) and

→
n · →

x = nixi . Expression (28) can be immediately generalized
to the case of a multi-qubit system. In the case of a system of N qubits in a global state ρN ,
the (global) tomogram is given by the following relation:

ωN(m1,m2, . . . , mN ; →
n1,

→
n2, . . . ,

→
nN) = tr

[
ρN

⊗
i=1,...,N

�(mi,
→
ni)

]
. (31)

In the case of a system of two qubits (31) simplifies to

ω2(m1,m2; →
n1,

→
n2) = tr

[
ρ2

1
4

(
σ0 + m1n

i
1σi

) ⊗ (
τ0 + m2n

i
2τi

)]
, (32)

where σµ and τµ are the Pauli matrices respectively related to the first and the second qubit.
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Defining xi = tr(ρ2σi), yi = tr(ρ2τi) and zij = tr(ρ2σi ⊗ τj ), where σi and τi are
short-hand notation for σi ⊗ τ0 and σ0 ⊗ τi respectively, the tomogram (32) reads

ω(m1,m2; →
n1,

→
n2) = 1

4

(
1 + m1n

i
1xi + m2n

i
2yi + m1m2n

i
1zijn

j

2

)
. (33)

Note that for simply separable states tr(ρ2σi ⊗ τj ) = tr(ρ2σi) tr(ρ2τj ), {i.e.} zij = xiyj , and
the tomogram assumes a factorized form:

ω(m1,m2; →
n1,

→
n2) = 1

4 (1 + m1
→
n1 · →

x )(1 + m2
→
n2 · →

y ). (34)

3.1. Two spin−1/2 Bell–Wigner inequalities

Let us consider the inequality proposed in [5]. It is related to the case of two spin−1/2
particles with perfect anti-correlation. For each particle the polarization is independently
measured along three arbitrary directions. The joint probability of finding the first and the
second particles polarized respectively in the

→
n1 and

→
n2 directions is indicated with P(

→
n1,

→
n2).

The hypothesis of perfect anti-correlation implies that the probability of measure parallel
polarization along a fixed direction vanishes:

P(
→
n,

→
n) = 0. (35)

Given the three arbitrary directions
→
na,

→
nb and

→
nc, the following inequality holds for a

classically correlated state [5]:

P(
→
na,

→
nb) + P(

→
nb,

→
nc) − P(

→
na,

→
nc) � 0. (36)

Note that these probability distributions are directly given in the tomographic representation,
since

P(
→
n1,

→
n2) = ω(1, 1; →

n1,
→
n2). (37)

Inequality (36) is obtained for perfectly classically anti-correlated states. It is easy to see
that a quantum simply separable state cannot exhibit perfect (anti-) correlations; hence we
consider non-perfect anti-correlation in a simply separable state of the following form:

ω(m1,m2; →
n1,

→
n2) = 1

4 [1 + m1(
→
n1 · →

x )][1 − m2(
→
n2 · →

x )]. (38)

For such a state, (36) are always fulfilled and are simply written as follows:

ω(1, 1; →
na,

→
nb) + ω(1, 1; →

nb,
→
nc) − ω(1, 1; →

na,
→
nc) (39)

= 1
4 [1 − (

→
na · →

x )(
→
nb · →

x ) − (
→
nb · →

x )(
→
nc · →

x ) + (
→
na · →

x )(
→
nc · →

x )] � 0, (40)

that is,

(
→
na · →

x )(
→
nb · →

x ) + (
→
nb · →

x )(
→
nc · →

x ) − (
→
na · →

x )(
→
nc · →

x ) � 1. (41)

Since the inequalities are fulfilled by non-perfectly anti-correlated particles in a factorized
state it follows that the same is true for a generic anti-correlated separable state.

As a simple example, we consider the case of a two-qudit system in the Werner state,
defined for φ ∈ [−1, 1] as follows:

ρd(φ) = 1

d3 − d2
[(d − φ)Idd2 + (dφ − 1)V ] , (42)

where Idd2 is the identity operator in the compound system space and V is the swap operator
(V ψ ⊗ φ = φ ⊗ ψ). These states are symmetric under local unitary operations of the kind
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U ⊗ U : hence we expect a particular simple tomographic expression for these states. The
state (42) is known to be entangled for φ < 0 and separable otherwise. Note that a spin−j

system can be viewed as a qudit with d = 2j + 1.
In the case of two qubits (d = 2) the tomogram of (42) reads as follows:

ωW = 1

4

[
1 +

2φ − 1

3
m1m2(

→
n1 · →

n2)

]
. (43)

In terms of tomogram, the inequality (36) is immediately written as

2φ − 1

3
[(

→
na · →

nc) − (
→
na · →

nb) − (
→
nb · →

nc)] � 1. (44)

It follows that the inequality (36) is violated for any φ < −1/2.

3.2. Two spin−1/2 CHSH inequalities

As we have recalled above, both Bell’s inequalities [1] and Bell–Wigner inequalities [5] assume
perfect (anti-) correlations between the two system qubits. The inequalities known as CHSH
inequalities were introduced [2] in order to relax the hypothesis of perfect correlation between
the two systems. Also in this case we deal with dichotomic observables. In the following we
consider the case of a composite system of two spin−1/2 and the relevant observables are
local magnetizations along a couple of directions. As in the original Bell argument, but in
contrast with the Wigner approach, these inequalities are expressed in terms of the expectation
values and correlations of local observables. Some aspects of CHSH inequalities and their
relation to tomographic probabilities were discussed in [24].

Given two arbitrary directions
→
n1 and

→
n2, let us consider the function

M(
→
n1,

→
n2) = tr

(
ρ2n

i
1σi ⊗ n

j

2τj

)
, (45)

which represents the correlation between the polarizations along the
→
n1 and

→
n2 directions,

respectively for the first and second qubits, over the two qubits density state ρ2. Note that, in
terms of tomograms, the correlation function (45) can easily be written as

M(
→
n1,

→
n2) =

∑
m1,m2

m1m2ω(m1,m2; →
n1,

→
n2). (46)

Given four arbitrary directions,
→
na,

→
nb,

→
nc and

→
nb′ , the CHSH inequalities read as follows:

|M(
→
na,

→
nb) − M(

→
na,

→
nc)| + M(

→
nb′ ,

→
nb) + M(

→
nb′ ,

→
nc) − 2 � 0. (47)

For two qubits Werner state, using (43), the average magnetization is easily written as

M(
→
n1,

→
n2) = 2φ − 1

3
(
→
n1 · →

n2). (48)

The inequality (47) reads

|2φ − 1|
3

[| →
na · (→

nb − →
nc)|− →

nb′ · (→
nb +

→
nc)] � 2. (49)

Note that the maximum of the function

Y (
→
na,

→
nb,

→
nb′ ,

→
nc)= | →

na · (→
nb − →

nc)|− →
nb′ · (→

nb +
→
nc) (50)

is reached when

→
na = ±

→
nb − →

nc

|→
nb − →

nc|
(51)
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→
nb′ = −

→
nb +

→
nc

|→
nb +

→
nc|

(52)

and
→
nb · →

nc = 0, and it is equal to 2
√

2. The inequality is violated for any φ < − 3
√

2−2
4 .

Hence, the violation of the inequality does not detect entanglement when −1 � φ � − 3
√

2−2
4 .

4. Qutrits tomography

In the previous sections we were dealing with qubit systems. Let us now consider the case
of qutrits. In order to write the spin tomogram for a generic qutrit state, one has to consider
the s = 1 irreducible representations of the group SU(2). Let us consider a realization of the
angular momentum as qutrits operators J1, J2, J3, such that

[Ji, Jj ] = iεk
ij Jk. (53)

In terms of this given representation, the spin tomogram of a qutrit state is related to the
standard density matrix description via the following relation:

ω(m,
→
n) = tr(ρ1�(m,

→
n)), (54)

where m = −1, 0, 1, and the qutrit de-quantizer operator is now given by

�(m,
→
n) = (1 − m2)Id3 +

m

2
niJi +

(
3

2
m2 − 1

)
(niJi)

2, (55)

where Id3 is the qutrit identity operator and �(m,
→
n) is the projector on the eigenvector of

polarization m along the
→
n direction. The relation (54) is easily generalized in the case of a

system of N qutrits as follows:

ω(m1,m2, . . . , mN ; →
n1,

→
n2, . . . ,

→
nN) = tr

[
ρN

⊗
i=1,...,N

�(mi,
→
ni)

]
. (56)

As an example let us consider the two-qutrits Werner state obtained from (42) with d = 3:

ρW = 3 − φ

24
Id9 +

3φ − 1

24
V. (57)

The tomographic representation is explicitly given by

ω(m1,m2; →
n1,

→
n2) = tr[ρW�(m1,

→
n1) ⊗ �(m2,

→
n2)], (58)

which yields

ω(m1,m2; →
n1,

→
n2) = 3 − φ

24
+

3φ − 1

24

[
3
(
1 − m2

1

) (
1 − m2

2

)
+

(
1 − m2

1

) (
3m2

2 − 2
)

+
(
1 − m2

2

) (
3m2

1 − 2
)

+
m1m2

2
(
→
n1 · →

n2)

+

(
3

2
m2

1 − 1

) (
3

2
m2

2 − 1

)
(1 + (

→
n1 · →

n2)
2)

]
. (59)

As another example, we discuss the nonlinear Bell-like inequality proposed in [25]:

〈AB ′ + A′B〉2 + 〈AB − A′B ′〉2 � 1, (60)

where A,A′ and B,B ′ are local observables for a system composed of two spins, with the
property of orthogonality tr(AA′) = 0, tr(BB ′) = 0. Although this inequality has been
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formulated for a system of two qubits, it can be considered for a system of two qutrits as well.
If A = ni

AJi, A
′ = ni

A′Ji, B = ni
BJi, B

′ = ni
B ′Ji , from (59) we obtain that

〈AB ′〉 = 3φ − 1

12
→
nA · →

nB ′ , (61)

and the inequality reads as follows:[
3φ − 1

24

]2

[(
→
nA · →

nB ′ +
→
nA′ · →

nB)2 + (
→
nA · →

nB − →
nA′ · →

nB ′)2] � 1. (62)

Note that [(
→
nA · →

nB ′ +
→
nA′ · →

nB)2 + (
→
nA · →

nB − →
nA′ · →

nB ′)2] < 8; therefore the inequality is
never violated.

5. Conclusions

To conclude, we point out the main results of the paper. We have developed a formulation
of Bell’s inequalities by means of tomographic probability distribution of spin projections
describing the quantum states completely. New formulae convenient for further analysis
for tomogram of one qubit, two qubits and tomograms of two qutrits Werner state were
obtained. The dequantizer operator for qutrit is also a new result presented in the paper. We
demonstrated that both Wigner inequalities and CHSH inequalities as well their violations
can be easily explained using joint probability distribution (tomograms) for spin projections.
There are bounds for the violation of CHSH inequalities discussed in [26–29]. The CHSH
inequalities (47) are expressed exactly in terms of the function (33), it follows that the bound
can be found as the maximum of the left-hand side of (47). We will develop the analysis of
Bell’s inequalities based on the tomographic star-product approach in future publications.
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